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A B S T R A C T

The slender property of shell structures causes the magnitude difference between in-plane and 
out-of-plane stiffness. Inspired by such a geometry-induced anisotropy phenomenon, this paper 
proposes a novel design approach to improve the stiffness of complex shell structures. The 
optimization algorithm is constructed based on two technical pillars, i.e., the explicit moving 
morphable components (MMC) framework and the computational conformal mapping (CCM) 
technique. Owing to the MMC framework, the proposed approach can describe complex topog-
raphy fields with local details via relatively few design variables, theoretically decreasing the 
computation burden. Towards shell structures in practice, of which the geometry models are 
usually flexible and complex, we leverage the CCM technique to parameterize the middle surfaces 
to obtain a unified and robust algorithm architecture. Representative examples with complex 
geometry models are provided to validate the proposed design method’s effectiveness, efficiency, 
and universality.

1. Introduction

Shell structure is one of the most ubiquitous and efficient structural elements in nature and engineering. Examples include cell 
(Banigan et al., 2017; Lim et al., 2002), microcapsule (Gordon et al., 2004), bionics (Wu et al., 2024), architecture (Adriaenssens et al., 
2014), automobile (Zhang et al., 2006), and spacecraft (Pisacane, 2005), etc. The superb performance of shell structures primarily 
arises from their slender, curved geometry, which enables them to effectively bear external loads while providing efficient protective 
capabilities (Chapelle and Bathe, 2011). However, shell structures usually suffer from extreme service environments and complicated 
loading conditions in practical applications. Consequently, the design of shell structures has long been a significant research focus, 
owing to the ability to further improve its load-bearing performance and economic benefit. Many works have emerged in this context, 
falling into four distinct categories: size optimization, shape optimization, topology optimization, and stiffening rib optimization.

Size optimization of a shell structure is straightforward, i.e., altering the specific geometric sizes such as height, width, and 
thickness. Shape optimization encompasses two techniques: CAD-based methods (Agarwal et al., 2019; Kang and Youn, 2016; Xu et al., 
2014) and node-based methods (Antonau et al., 2022; Hojjat et al., 2014; Shimoda and Liu, 2014). CAD-based methods utilize the 
spline models, particularly NURBS descriptions for free surfaces (Piegl and Tiller, 2012), to represent shell structures, with design 
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objects being the corresponding modeling parameters. Unlike size optimization, the design objects in CAD-based methods control the 
shape but do not represent specific geometric sizes. On the other hand, node-based methods, also known as vertex-based or CAD-free 
methods, exploit the coordinates of the nodes in finite element discretization as the design variables. Research on topology optimi-
zation of shell structures dates back to the pioneering work (Cheng and Olhoff, 1981). Since then, various powerful methods have been 
exploited to conduct topology optimization for shell structures, including the Solid Isotropic Material with Penalization (SIMP) method 
(Maute and Ramm, 1997), the Bi-directional Evolutionary Structural Optimization (BESO) method (Xiong et al., 2023), the Level Set 
Method (LSM) (Townsend and Kim, 2019), and the Moving Morphable Components (MMC) method (Huo et al., 2022). Among these, 
topology optimization for shell structures based on the MMC method (Guo et al., 2014) can achieve final results with clear load paths 
using a small number of design variables, owing to the design variables endowed with geometric meanings. In contrast, stiffener 
optimization focuses on the attached stiffening ribs rather than the shell structure. Rib-stiffened shells have been widely researched 
due to their convenient and efficient properties in various scenarios. Examples include designing stiffeners with casting constraints (Liu 
et al., 2015), optimizing hierarchical stiffened shells based on the Smeared Stiffener Method (SSM) to reduce computational burden 
(Hao et al., 2014), solving layout optimization problems for curved stiffeners on composite shell structures (Wang et al., 2019), and 
using B-spline parameterization to optimize stiffener layout for shell structures (Feng et al., 2021). Additionally, these approaches are 
not strictly independent. Many integrated design approaches have been proposed to enhancing structural performance further. Ex-
amples include shape and topology optimization of shell structures (Ansola et al., 2002; Cai et al., 2023; Hassani et al., 2013), using 
topology optimization to design stiffening ribs (Jiang et al., 2022, 2023), concurrently optimizing the shape of shell structures and the 
layout of attached reinforcement ribs (Ansola et al., 2004), unified frameworks (Huo et al., 2023), and simultaneously optimizing the 
topology and layout of stiffeners on shells (Bakker et al., 2021).

In summary, various design methods emphasize different aspects. Size and shape optimizations focus on adjusting modeling pa-
rameters. Topology optimization, on the other hand, aims to eliminate inefficient or ineffective material (such as low-strain-energy 
elements in static compliance optimization) and distribute material efficiently to achieve lightweight designs. The success of rib- 
stiffened structures lies in the ability of attached stiffeners to enhance out-of-plane stiffness and mitigate detrimental out-of-plane 
deformation. In contrast to the existing approaches, the current study stems from observing the load-bearing nature of shell struc-
tures. Specifically, the inherent slenderness property of shell geometry induces stiffness difference along different directions (as 
depicted in Fig. 1). Given this geometry-induced anisotropy, we introduce topography variation as a specialized structural element to 
modify the load-bearing mode. As shown in Fig. 2, the uneven topography increases the structure stiffness by transforming the flat, 
flexible plate into a wavy form. Analogous to reinforcing ribs, the shell topography can improve structure performance by restraining 
global out-of-plane deformation.

The effects of topography on structural responses have been studied across different scales and disciplines, such as geometry- 
induced rigidity (Lazarus et al., 2012), wave motion (Dorn and Kochmann, 2023), metamaterials (Faber et al., 2020), crystallog-
raphy (Vitelli et al., 2006), and crack manipulation (Feng et al., 2023; Liu et al., 2023; Mitchell et al., 2017). However, these studies 

Fig. 1. Schematic illustration of the stiffness difference induced by the slenderness property. (a) A shell structure of linear isotropic elastic material 
is fixed at the end, and subjected to an in-plane static load. (b) The resultant displacement of (a) is in-plane-dominated. (c) The force is rotated to the 
vertical direction, and then the displacement pattern of the shell structure is changed to out-of-plane deformation dominated. These two cases show 
that the in-plane stiffness is much larger than the out-of-plane stiffness for shell structures.

Fig. 2. Topography variation can be exploited to modify the load-bearing mode of shell structures and enhance structure performances. (a-b) A 
representative example of leveraging topography variation to modify the load-bearing mode (Adriaenssens et al., 2014). (a) The flat plate is easily 
bended under the load. (b) In the form of reinforcing ribs, the uneven topography makes the structure more resistant to bending.
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have focused on the forward problem of exploring underlying mechanical mechanisms. From a mathematical and technological 
perspective, a more interesting question is the inverse problem of designing topography variation that achieve superior or prescribed 
structure properties. Several critical issues emerge when addressing the challenge of designing topography for curved shell structures: 
how to describe topography on general surface shells, parameterize the complicated topography variation, and construct an opti-
mization formulation to drive the design process? In response, we propose a systematical topography optimization method that tackles 
these challenges and obtains rational designs. The cornerstone of this approach is the so-called embedded spline components, which 
embeds spline-based MMC components from a simple plane domain into the original complex surface using the computational 
conformal mapping (CCM) technique. Benefiting from the explicit MMC framework (Guo et al., 2014; Zhang et al., 2016), spline 
components can achieve complex topography descriptions with a small number of design variables. On the other hand, the CCM 
technique (Lui et al., 2014, 2013; Meng et al., 2016) maps the middle surface to a standard plane domain, enabling the approach to 
handle shell structures with complex geometry.

From the algorithmic perspective, the proposed approach is a generalized shape optimization method, and its advantages are 
summarized below. The MMC method describes complex topographic variations using a few spline-based components, significantly 
reducing the number of design variables. The reduction in variable number directly lowers the computational cost of the optimization 
problem, especially when compared to node-based methods, which require a much larger number of variables corresponding to the 
number of nodes. Computational efficiency is further enhanced by conformal mapping, simplifying the handling process of complex 
geometries. This technique transforms the complex shell surface into a simpler parameter domain, allowing the MMC-based opti-
mization to be performed more effectively. It also eliminates the need for the tedious re-meshing processes commonly required in CAD- 
based methods. Moreover, our approach utilizes a mesh model to represent the geometry, avoiding the initial parameterization for the 
middle surface of the shell and extensive re-parameterizations for topographic details, as required in CAD-based approaches. The 
method naturally produces smooth topographies, eliminating the need for the filtering steps often required at each iteration in node- 
based approaches. Additionally, our method is compatible with previous techniques and can be combined to create more efficient 
structures. This study gives special consideration to the topography design of shell structures with complex geometry models.

This article is structured as follows. Section 2 introduces the theoretical foundations of constructing embedded spline components. 
In Section 3, the optimization problem is formulated, and the detailed sensitivity analysis is derived. Section 4 describes specific 
solution techniques and design processes. In Section 5, a series of numerical experiments are conducted to explore the effects of pa-
rameters on improving structural performance, and several representative design examples are provided to validate the effectiveness 
and efficiency of the proposed method. Conclusions and extensions are presented in the final section.

2. Theoretical foundations

This section briefly outlines the approach to constructing topography variation based on the MMC framework, which is subse-
quently utilized to alter the shape of shell structures.

2.1. Embedded topography description

In this study, we utilize the middle-surface approach to modeling the shell structure. The configuration of surface S, representing 
the middle surface of the shell structure to be designed, is perturbed by the topography variation. Specifically, for each point x on the 
surface S, its position is moved to xʹ(x) along the direction of the positive normal vector N(x) via 

xʹ(x) = x + hS(x) ⋅ N(x), (2.1) 

where hS(x) is the surface topography field (STF) function reflecting the variation magnitude, as shown in Fig. 3. The normal vector is 
defined through classical differential geometry for smooth surfaces and discrete differential geometry (Taubin, 1995) for unsmooth 
cases. Constructing such a pointwise function will involve complicated surface operations and lead to problems when extended to 
arbitrary complex shell models. In this context, we propose the embedded topography description, which maps the middle surface to a 
standard parametric domain first, defines the topography function in the obtained parametric domain, and embeds the topography 
into the middle surface in the end.

Mapping a complex surface to a simple domain, known as surface parameterization, plays a crucial role in computer industries (Kuo 
et al., 2021). Many significant tasks, including texture mapping, surface morphing, and mesh generation, rely on the 
dimension-reduction property of surface parameterization (Gu et al., 2004). Due to the rapid development in computer science, 
numerous innovative methods (Jin et al., 2008; Kharevych et al., 2006; Su et al., 2016) have been developed and implemented to 

Fig. 3. The topography variation is realized via the surface perturbation. The perturbation direction is along the positive normal vector of each 
point of the original surface. Nevertheless, constructing the topography function in a pointwise manner will involve complicated surface operations.
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achieve surface parameterization. The proposed study utilizes the computational conformal mapping technique (Lui et al., 2014, 2013; 
Meng et al., 2016) to acquire proper mappings, where the advantages of bijectivity and conformality are fundamental to alleviating 
nonlinearity and singularity in the optimization problem formulation. The primary task of the CCM technique is computing a 
conformal mapping f : S→M, where M is a rectangular parametric domain defined in R2. Here, S is restricted to homeomorphic to M. 
Instead of directly computing the mapping, we achieve conformality by composing two quasi-conformal mappings with appropriate 
Beltrami coefficients, significantly accelerating the computation. The first quasi-conformal mapping f1 : S→D⊂C is a disk harmonic 
mapping obtained by solving the following equations using the finite element method (Pinkall and Polthier, 1993): 

{
ΔSf1 = 0, in S,

f1(∂S) = ∂D, (2.2) 

where ΔS is the Laplace-Beltrami operator defined on the surface S, the symbol D represents the target disk domain defined in the 
complex plane C (see Fig. 4(a)), and symbols ∂S and ∂D represent the boundaries of S and D, respectively. Then, the linear Beltrami 
solver (LBS) scheme (Lui et al., 2014) is leveraged here to eliminate the conformality distortion of the first mapping. Denote μf − 1

1 
= ρ 

+jτ the Beltrami coefficient of the inverse mapping f − 1
1 with ρ, τ, and j representing the real part, the imaginary part, and the imaginary 

unit (j2 = − 1), respectively. Let f2(x+jy) = u(x, y) + jv(x, y) : D→M be the second desired quasi-conformal mapping (see Fig. 4(b)), 
whose Beltrami coefficient is given by μf2 = μf − 1

1
. Here, (x, y) and (u, v) are the complex coordinates defined on the disk D and the 

parameter domain M, respectively. According to the LBS scheme, the mapping f2 can be reconstructed by solving the following system 
of equations (also realized through the finite element method): 

⎧
⎨

⎩

∇ ⋅ (A(∇u)) = 0, in D,
∇ ⋅ (A(∇v)) = 0, in D,
f2(∂D) = ∂M,

(2.3) 

where ∇( ⋅ ) =

(
∂(⋅)
∂x ,

∂(⋅)
∂y

)

, A =

(
α1 α2
α2 α3

)

with α1 =
(ρ− 1)2+τ2

1− ρ2 − τ2 , α2 = − 2τ
1− ρ2 − τ2, and α3 =

(ρ+1)2+τ2

1− ρ2 − τ2 . Here, ∂M represents the boundary of 

the rectangular domain M. The ultimate mapping f is established as f = f2 ∘ f1. By leveraging the resultant mapping of the conformal 
parameterization process, the definition domain of the STF function is reduced to the parametric domain M, i.e., 

hS(x) = hS
(
f − 1(p)

)
= hM(p), (2.4) 

with f(x) = p(u, v) and hM representing the plane topography field (PTF) function. Furthermore, the perturbation of the surface is 
modified as 

xʹ(x) = x + hM(p) ⋅ N(x), (2.5) 

Fig. 4. Schematic illustration of solving the conformal mapping by composing two quasi-conformal mappings. (a) The first mapping. (b) The 
second mapping.

W. Huo et al.                                                                                                                                                                                                           Journal of the Mechanics and Physics of Solids 196 (2025) 105974 

4 



which means that for each point x, the construction process of perturbation magnitude is simplified from the surface S to the plane 
domain M under the embedded topography description framework, as shown in Fig. 5.

2.2. Construction strategy of the plane topography field (PTF) function

Analogous to structure topology optimization (Guo et al., 2014), the moving morphable components (MMC) method is introduced 
to approximate the optimal plane topography function, hM(p). The complex and continuously varying topography comprises a set of 
moving, morphing, and merging structure components, which makes the proposed algorithm possess the advantages of a small number 
of design variables, clear and smooth structure boundaries, and interpretable final designs. Specifically, this study leverages the to-
pology description function (TDF) to characterize the perturbed domain. For the i-th component, its TDF is expressed as 

Fig. 5. Schematic illustration of the implementation process of the embedded topography description. (a) The first step is to solve the conformal 
mapping and obtain the parametric domain via the CCM technique. (b) Designing topography variation (the DUT letters) in the parametric domain. 
(c) Embedding the topography design into the original surface, i.e., Eq. (2.5).

Fig. 6. Schematic illustration of the construction process of the PTF function. (a) The TDF function ϕi indicates the perturbation domain. (b) The 
Heaviside function is leveraged to regularize the height value. (c) The topography magnitude is scaled by the height design variable. (d) The global 
plane topography function is constructed via the topography assembly process, i.e., Eq. (2.8).
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⎧
⎨

⎩

ϕi(u, v) > 0, if (u, v) ∈ Mi,

ϕi(u, v) = 0, if (u, v) ∈ ∂Mi,

ϕi(u, v) < 0, if (u, v) ∈ M \ (Mi ∪ ∂Mi),

(2.6) 

where Mi is a subset of the parametric domain M occupied by the i-th component (shown in Fig. 6(a)), and ∂Mi represents the boundary 
of Mi. Note that the TDF function only indicates whether the domain is protuberant and the height information is missing. Hence, as 
displayed in Fig. 6(b-c), the topography field is further constructed as 

hi(u, v) = hi ⋅ H(ϕi(u, v)), (2.7) 

where the symbol hi, as a design variable, represents the height of the i-th topography component, and H( ⋅ ) is the regularization 
Heaviside function (Zhang et al., 2016) that maps the variable to the interval of [0, 1]. At the global level (illustrated in Fig. 6(d)), the 
plane topography function hM consists of the topography field function of every component: 

hM = max(h1,…, hi,…, hnc), (2.8) 

where nc represents the total number of components in the design domain.

2.3. Spline component description for topography function

In contrast to the TDF constructions in previous studies (Zhang et al., 2016), this paper proposes a novel spline component 
description to efficiently parameterize topography functions. This description is capable of describing complex surface topography 
with a small number of variables. It is noteworthy that the complexity of topography arises not only from height variations, which can 
be addressed using Eq. (2.7-2.8), but also from the shape of the boundary of the perturbed domain. Therefore, the indicative function 
ϕi(u, v) requires careful definition. To address these challenges, we employ the spline component to describe the shape of the 
perturbation domain, as illustrated in Fig. 7. First of all, we construct a local coordinate system (ú , v́ ) by 

(
uʹ

vʹ

)

=

[
cosθi sinθi
− sinθi cosθi

](
u − ui

0

v − vi
0

)

, (2.9) 

where ui
0 and vi

0 are the local coordinates of the i-th component’s central point, and θi represents its rotational angle with respect to the 
global Cartesian coordinate system. These three design variables, ui

0, vi
0, and θi endow the component with the capacity of rigid 

displacement. In the second place, we transfer the Cartesian coordinate system to a polar coordinate (r,φ) by 

r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(uʹ)2
+ (v́ )2

√

, (2.10) 

φ = arctan
(v́

uʹ
)
. (2.11) 

Then, the boundary of the i-th component is expressed by the radius-basis form: 

r̃i(φ) =
∑nr

k=0

Rk,p(φ)tk
i , (2.12) 

Fig. 7. Schematic illustration of a spline component with nr = 8.
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where tk
i is the k-th shape coefficient of the i-th component (t0

i equals tnr
i such that the boundary forms a closed loop), and Rk,p is the 

p-order (p = 2 in this study) NURBS radius basis function and has the following form: 

Rk,p(φ) =
Nk,p(φ)wk

∑nr
l=0Nl,p(φ)wl

. (2.13) 

In Eq. (2.13), wk is the weight associated with the k-th basis function (wk = 1 in this study), and Nk,p(φ) is the k-th B-spline basis 
function defined by the Cox-de Boor recursion formula: 

Nk,0(φ) =

{
1, if φk ≤ φ ≤ φk+1,

0, otherwise,
(2.14) 

and 

Nk,p(φ) =
φ − φk

φk+p − φkNk,p− 1(φ) +
φk+p+1 − φ

φk+p+1 − φk+1Nk+1,p− 1(φ), p ≥ 1 (2.15) 

where φk is the k-th knot belongs to the knot vector Ξ =
{

φ1,φ2,…,φnr+p+1}. At last, the indicative function ϕi(u, v) is defined via a 
regularized form: 

ϕi(u, v) = 1 −

(
r

r̃i(φ) + eps

)q

. (2.16) 

where the symbol q represents the shape exponent (q = 2 in this study), and eps = 10− 15 is a tiny quantity that prevents singularity. 
Owing to the strong deformation capacity of the NURBS description, the definition (2.16) can easily characterize the complex shape of 
the perturbation domain. On the other hand, the local-support property of the spline basis function circumvents potential Runge’s 
phenomenon in shape interpolation, i.e., Eq. (2.12). Further, it ensures numerical stability in the optimization process. In conclusion, 
the vector of the design variables of the i-th spline-based component is defined as Di =

(
ui

0,vi
0,θi, t1i , t2

i ,…,tnr
i ,hi

)
, and the vector of the 

design variables of the global topography description is assembled as D = (D1, D2,…,Dn). The topography function is thereby defined 
as hS(x;D) = hM(p;D).

2.4. Topography definition on arbitrary complex surfaces

In the sections above, we have proposed detailed construction procedures to obtain the topography function. An underlying hy-
pothesis of the CCM technique we utilized may be overlooked: the original surface should be homeomorphic to a rectangle domain, 
which limits the algorithm application scope. Considering the potential geometric complexity of the shell structure, two additional 
solutions are introduced in this section, i.e., the surface-cutting operation and the multi-patch stitching scheme, to handle surfaces with 
complex topology properties and enhance the practicability of the proposed design method.

2.4.1. Surface topography field (STF) function definition via the surface-cutting operation
When the middle surface of the designed shell structure possesses non-trivial topology (e.g., multi-connected, non-zero genus, etc.), 

the CCM technique mentioned above and the approaches to constructing the surface topography field cannot be used directly. In this 
context, the surface-cutting operation is introduced to preprocess the original surface. Taking the cylinder model as an example, as 
illustrated in Fig. 8, we first cut along the generatrix Γ (for arbitrary manifold surfaces, the cut lines are obtained through algorithms of 
computational topology (Dey et al., 2008)), after which the intermediate surface S∗ is generated. The surface S∗ is topologically 
equivalent to a plane rectangle; that is, the conformal mapping f : S∗→M can be obtained via the CCM technique, where M represents 
the corresponding parametric domain. Concerning the topography function of the surface S∗, the construction follows the rules in the 
preceding sections, i.e., hS∗ (x∗;D) = hM(p;D) where symbols x∗ and p represent the point on the surface S∗ and the corresponding point 
that is mapped to the parameter domain, respectively. Note that the curve Γ on the original surface S derives two curves Γ∗

1 and Γ∗
2 on 

S∗; that is, for each point x ∈ Γ, it splits into two points x∗
1 and x∗

2, which further causes inconsistency of the topography function hS 

Fig. 8. STFF definition via the surface-cutting operation.
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taken on the cutting curve Γ. Back to the original surface S, the topography function hS is therefore defined as: 

hS(x;D) =

{
hS∗ (x∗;D), if x ∈ S \ Γ,
max

(
hS∗
(
x∗

1;D
)
, hS∗

(
x∗

2;D
))
, if x ∈ Γ.

(2.17) 

2.4.2. Surface topography field (STF) function definition via the multi-patch stitching scheme
Up to now, the proposed method has been able to deal with general complex surfaces. However, due to the global property, the 

single-mapping process may involve numerical instabilities. Hence, the multi-patch stitching scheme is introduced to address this 
issue, which decomposes the original complex surface into several simple patches according to geometry features, and then defines 
topography functions in these relatively simple surface patches, and stitches perturbed patches together at last, as demonstrated in 
Fig. 9. Similar to the former subsection, further treatments are required after the decomposition. Suppose S = ∪ns

i=1Si is a surface 
partition, where Si is the i-th surface patch, and ns is the number of patches. Note that no shape constraint of each patch is required. For 
each patch Si, the topography field is characterized as hSi , which is computed through Eqs. (2.4, 2.6-2.17). For the sake of defining the 
topography of the whole surface, the locally defined topography function hSi is extended to the global domain by: 

hs
Si

(
x;Di) =

{
hSi

(
x;Di), if x ∈ Si,

0, if x ∕∈ Si,
(2.18) 

where Di is the vector of design variables corresponding to the patch Si. In Eq. (2.18), 0 represents no perturbation defined out of 
domain Si. By leveraging the extended definition, the topography function of the whole surface is assembled as follows: 

hS(x;D) = max
(

hs
S1
, hs

S2
,…, hs

Sns

)
. (2.19) 

3. Problem statement and sensitivity analysis

3.1. Optimization formulation

In this study, we consider the topography optimization problem that minimizes the structural compliance of shell structures. All 

Fig. 9. STFF definition via the multi-patch stitching scheme. (a) The original surface is divided into four patches according to the geometry feature. 
(b) The topography of each patch is constructed via the approaches above, which include the embedded description and the surface-cutting 
operation. (c) The topography of the whole surface is obtained by stitching all patches with defined topography.
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materials involved are assumed to be linear elastic, isotropic, and homogenous. Suppose S(D) is the perturbed middle surface of the 
shell structure. We have S0 = S(0) representing the original middle surface and B(D, t) = S(D) × [ − t /2, t /2] representing the domain 
occupied by the perturbed shell structure, where t is the thickness coordinate, and t is the thickness of the shell. In contrast to that the 
middle surface S is the core concern for geometric modeling in the previous section, this section mainly focuses on the bulk domain 
considering the shell theory utilized (shown in Fig. 10(a)). The topography optimization problem under the current spline-component- 
based framework is formulated as 

Find D, U(x;D) (3.1a) 

Minimize C = C(U(x;D),D) =

∫

B(D,t)
(F(D) ⋅ U(x;D))dV, (3.1b) 

s.t.
∫

B(D,t)

(
C

αβλμeαβ(U(x;D))eλμ(V(x;D)) + D
αλeα3(U(x;D))eλ3(V(x;D))

)
dV =

∫

B(D,t)
(F(D) ⋅ V(x;D))dV, ∀ V(x;D) ∈ Uad,

(3.1c) 

U(x;D) ∈ U, D ∈ U D, (3.1d) 

where the symbols C and F(D) represent the structural compliance function and the external force, respectively, C αβλμ and D αλ are the 
constitutive tensors of the curvilinear coordinate system. In Eq. (3.1), the primary displacement U(x;D) belongs to a prescribed 
constraint set U, and the virtual displacement V(x;D) belongs to an admissible set Uad. These two displacements both satisfy the 
Reissner-Mindlin kinematical assumption. Additionally, eαβ( ⋅ ) is the surface strain tensor (containing the membrane and bending 
behaviors), eα3( ⋅ ) is the transverse shear strain tensor, and U D is the set utilized to avoid infeasible topography descriptions.

3.2. Sensitivity analysis

As shown in Eq. (3.1), the integral domain of structural responses (i.e., B(D,t)) varies during the design processes. Hence, we utilize 
the shape sensitivity analysis method to handle the shape variation (Choi and Kim, 2004; Sokolowski and Zolesio, 1992). For the sake 
of simplicity of illustration, we use the symbol d, which is an arbitrary element of design variables, to represent the parameter con-
trolling the shell shape instead of the vector D. Suppose I(W) =

∫

B(d,t)
WdV is a general structural response (assuming that I(W) satisfies 

the design domain’s regularity requirements and some smoothness conditions), where W = W(U(x; d), V(x; d)) is a functional of 
U(x; d) and V(x; d). Here, U(x; d) and V(x; d) are displacements corresponding to U(x;D) and V(x;D), respectively. According to 
Raynold’s transport theorem, the material time derivative of I(W) is 

D
Dd

I(W) =

∫

B(d,t)

(
∂W
∂d

+ div(Wv)
)

dV, (3.2) 

where div( ⋅ ) is the divergence operator, and the symbol v is the velocity field induced by the instant change of the parameter d. By 
leveraging the Gauss theorem, the second term in Eq. (3.2) is reduced to the boundary ∂B(d, t) as 

∫

B(d,t)
div(Wv)dV =

∫

∂B(d,t)
WVndS, (3.3) 

where Vn = v ⋅ N with N representing the outer normal vector defined on ∂B(d, t), and we have 

D
Dd

I(W) =

∫

B(d,t)

(
∂W
∂d

)

dV +

∫

∂B(d,t)
WVndS. (3.4) 

Fig. 10. (a) Schematic illustration of the relationship of the middle surface with the bulk domain. (b) The boundary of the bulk domain is 
decomposed into three parts. (c) The thickness and the curvature give rise to the velocity inconsistency between the upper surface and the lower 
surface, hence points on these two surfaces are considered separately. (d) Representation of the bulk domain in the discrete level.
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Below, we conduct the specific sensitivity analysis according to the above formula. We denote by WC = WC(U(x; d),V(x; d)) the 
integrand of the left-hand side of Eq. (3.1c), i.e., the generalized density of strain energy, we have 

∂WC(U(x; d), V(x; d))
∂d

= WC(U’(x; d),V(x; d)) + WC(U(x; d),V’(x; d)), (3.5) 

where ( ⋅ )́ = ∂
∂d ( ⋅ ) represents the local derivative. According to Eq. (3.4), the material time derivative of the left-hand side of Eq. 

(3.1c) is given by 

D
Dd

I(WC) =

∫

B(d,t)
(WC(U’(x; d),V(x; d)) + WC(U(x; d),V’(x; d)))dV +

∫

∂B(d,t)
WCVndS (3.6) 

Denote the integrand of the right-hand side of Eq. (3.1c) by WF = WF(U(x; d), V(x; d)), we have 

D
Dd

I(WF) =

∫

B(d,t)

(
∂WF

∂d

)

dV +

∫

∂B(d,t)
WFVndS, (3.7) 

where WF = F(d) ⋅ V(x; d) and 

∂WF

∂d
=

d
dd

F(d) ⋅ V(x; d) + F(d) ⋅ V’(x; d) =
d
dd

F(d) ⋅ V(x; d) + WF(U(x; d),V’(x; d)). (3.8) 

Since the topography and the velocity fields have sufficient smoothness, Vʹ(x; d) belongs to the Hilbert space H1(B(d, t)), which 
means Vʹ(x; d) ∈ Uad. Thus, 

∫

B(d,t)

(
C

αβλμeαβ(U(x; d))eλμ(V’(x; d)) + D
αλeα3(U(x; d))eλ3(V’(x; d))

)
dV

=

∫

B(d,t)
(F(d) ⋅ V’(x; d))dV (3.9) 

i.e., 
∫

B(d,t)
WC(U(x; d),V’(x; d))dV =

∫

B(d,t)
WF(U(x; d),V’(x; d))dV. (3.10) 

Noting that 

D
Dd

I(WC) =
D
Dd

I(WF). (3.11) 

Substituting Eq. (3.6-3.8) into Eq. (3.11) and utilizing Eq. (3.10) yields 
∫

B(d,t)
WC(U’(x; d),V(x; d))dV +

∫

∂B(d,t)
WCVndS =

∫

B(d,t)

d
dd

F(d) ⋅ V(x; d)dV +

∫

∂B(d,t)
WFVndS. (3.12) 

Since U(x, d) = V(x, d) in the concerned compliance minimization problem (Guo et al., 2014), the compliance function satisfies 

C =

∫

B(d,t)
WC(U(x; d),U(x; d))dV. (3.13) 

By leveraging Eq. (3.6, 3.12-3.13), we can derive the expression for the material time derivative DC
Dd as follows 

DC
Dd

= 2
∫

B(d,t)
WC(U’(x; d),U(x; d))dV +

∫

∂B(d,t)
WCVndS = 2

∫

B(d,t)

d
dd

F(d) ⋅ U(x; d)dV +

∫

∂B(d,t)
(2WF − WC)VndS. (3.14) 

We note that the calculation of Uʹ is eliminated in Eq. (3.14). Additionally, the numerical implementation of the sensitivity analysis 
described above is realized through finite element discretization.

3.3. Calculation and derivative of the velocity field

Until now, the derivation of compliance sensitivity remains unresolved for variables ∂B(d,t), and Vn (Vn = v ⋅ N). We notice that the 
geometry quantity Vn is only calculated on ∂B(d, t). Since B(d, t) = S(d) × [ − t /2, t /2] (shown in Fig. 10(a)), we have 

∂B(d, t) = ∪3
i=1Γi, (3.15) 

with 
⎧
⎨

⎩

Γ1 = B(d, t)|t=t/2,

Γ2 = B(d, t)|t=− t/2,

Γ3 = ∂S(d) × [ − t/2, t/2],
(3.16) 
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as shown in Fig. 10(b). For each point xʹ = xʹ(x; d) on the middle surface S(d), the position is obtained by the perturbation operation 
from the point x of the original surface S0, i.e., 

xʹ(x; d) = x + hS(x; d) ⋅ N(x, S0), (3.17) 

where N(x, S0) is the positive normal vector of the surface S0 taken at the point x. Projecting the point xʹ to the upper surface Γ1 and the 
lower surface Γ2 along the local normal vector (shown in Fig. 10(c)), the corresponding projection points (after surface perturbation) 
are expressed as 

⎧
⎪⎪⎨

⎪⎪⎩

xʹ
1 = xʹ +

t
2

N(xʹ, S(d)),

xʹ
2 = xʹ −

t
2

N(xʹ, S(d)),
(3.18) 

where N(xʹ, S(d)) represents the positive normal vector of the surface S(d) taken at the point xʹ. Below, we take the upper boundary Γ1 
as an example and derive the velocity field induced by the instant change of parameter d. Substituting Eq. (3.17) into Eq. (3.18), we get 

xʹ
1(x; d) = x0 + hS(x; d) ⋅ N(x, S0) +

t
2

N(xʹ, S(d)). (3.19) 

The velocity field v1 of Γ1 is defined as the material time derivative of xʹ with respect to d, i.e., 

v1 =
D
Dd

xʹ
1(x; d) =

∂
∂d

hS(x; d) ⋅ N(x, S0) +
t
2

∂N(xʹ, S(d))
∂d

, (3.20) 

and we have 

V1
n = v1 ⋅ N

(
x’

1,Γ1
)
, (3.21) 

where N
(
x’

1,Γ1
)

is the outer normal vector of the boundary Γ1 taking at the point x1́. The derivation of the velocity field of boundary Γ2 

is similar to the derivation above. In addition, due to the slenderness property of the structure, the integrals over the boundary Γ3 are 
omitted. Considering that the topography field is defined through the surface-cutting operation and the multi-patch stitching scheme, 
the derivative of hS(x; d) with respect to d reads 

∂
∂d

hS(x; d) =
∂hS

∂hs
Si

∂hs
Si

∂hSi

∂hSi

∂hS∗i

∂hS∗i
∂d

, (3.22) 

where hSi represents the topography field defined on the i-th surface patch Si, the symbol hs
Si 

represents the extended definition via Eq. 
(2.18), and S∗

i is the intermediate surface (obtained from the surface-cutting operation) corresponding to the surface Si. Here, hS∗i is 
obtained via hS∗i (x; d) = hMi (p; d) with fi(x0) = p : S∗

i →Mi denoting the i-th conformal mapping. The partial derivative of hMi (p; d) with 
respect to d is given by 

∂
∂d

hMi (p; d) =
∂hMi (p; d)
∂hi,k(p; d)

∂hi,k(p; d)
∂d

, (3.23) 

where hi,k(p; d) is the topography field function defined on the i-th domain by the k-th component, i.e., Eq. (2.7-2.16).

4. Solution techniques and implementation details

4.1. Solution techniques and the calculation of discrete sensitivity

In the current study, the shell FEM is performed in the commercial software Abaqus using the general-purpose S3 shell element, 
which provides precise solutions to structural responses for both thick and thin shells. The exploited triangulated unstructured meshes 
also reduce the difficulty in describing complex shell structures. In addition, the number of integration points along the thickness 
direction is chosen as np = 7, and the thickness integration rule is the Simpson formula.

Regarding Eq. (3.14), the corresponding discrete sensitivity is calculated via the finite element discretization. Let SΔ(d) =

∪
ne
e=1 Se

Δ(d) be the triangulated mesh of the surface S(d) with Se
Δ(d) denoting the e-th shell element. The discrete bulk domain is 

expressed as BΔ(d, t) = ∪
ne
e=1 Be

Δ(d, t) = ∪
ne
e=1 Se

Δ(d) × [ − t /2, t /2] with Be
Δ(d, t) denoting the corresponding solid domain of the e-th shell 

element. At the implementation level, Eq. (3.14) is discretized as 
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DC
Dd

= 2
∑ne

e=1

(
d
dd

F(d) ⋅ U(x; d)
)

e
Ve+

∑ne

e=1

(
((2WF − WC)Vn)

upper
e + ((2WF − WC)Vn)

lower
e

)
Ae,

(4.1) 

where symbols ( ⋅ )e, ( ⋅ )upper
e , and ( ⋅ )lower

e represent the values of ( ⋅ ) taking at Be
Δ(d, t), Be

Δ(d, t /2), and Be
Δ(d, − t /2), respectively (as 

shown in Fig. 10(d)). In Eq. (4.1), Ve is the volume of the solid domain Be
Δ, and Ae represents the area of the triangle Se

Δ. In addition, the 
Heaviside function we utilized in this study is expressed as 

Hα,ϵ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if x > ϵ,

3
4

(
x
ϵ
−

x3

3ϵ3

)

+
1 + ϵ

2
, if |x| ≤ ϵ,

0, otherwise,

(4.2) 

where ϵ = 0.6 is the width of numerical approximation. In order to avoid the interrupt height variation at the point x = 0, the specific 
Heaviside function H∗ is obtained by the horizontal movement, i.e., H∗(x) = Hα,ϵ(x − ϵ). We exploit the following K-S function 
(Kreisselmeier and Steinhauser, 1980) to approximate the assembly operator (i.e., Eq. (2.8), Eq. (2.17), and Eq. (2.19)): 

χ = max
(
χ1,…, χn) ≈

ln
( ∑n

i=1exp(lχi)
)

l
, (4.3) 

where l is a large positive number (l = 100 in the current study).

4.2. Design processes and technical remarks

The design processes for the topography of shell structures are summarized as follows, comprising three major modules: surface 
preprocessing, explicit topography description, and optimization iterations. Initially, the surface mesh is divided into patches based on 
geometric features. The intermediate surface is obtained through the surface-cutting operation for each mesh patch, and conformal 
mapping is performed using the CCM technique. The topography field function for each patch is then constructed using Eqs. (2.6-2.16). 
Moreover, the global topography field function is assembled using Eqs. (2.17-2.19). The middle surface and the shell structure are 
altered through Eq. (2.5), followed by the FEA process to obtain structural responses and sensitivities of the modified shell structure. 
The design variables are updated using the MMA (method of moving asymptotes) optimizer (Svanberg, 1987). This step, along with 
constructing the topography field function, altering the shell structure, and calculating responses and sensitivities, iterates until the 
convergence requirements are satisfied. The following technical comments further explain the details of the solution for this work.

Remark 1. In some shell theories, the degenerated energy (i.e., the integral of the density of strain energy over the middle surface S 
rather than the bulk B) is utilized to approximate the deformation behaviors, which will induce complicated surface variational 
problems in sensitivity analysis and extra computational burden (e.g., the discrete mean curvature of the surface). Fortunately, the 
shell element in this study and the equipped theory are constructed upon the bulk domain, naturally solving the above issues.

Remark 2. Although the TDF function is also utilized in the current work, the main framework and the central motivation are 
different from conventional topology optimization. Notably, the classical volume fraction constraint is not necessary for obtaining a 
well-posed optimization problem formulation.

Remark 3. Numerous methods exist for mapping a complex surface to a simpler domain in a plane. However, the CCM technique 
used in this study is based on discrete meshes, which can be integrated with existing CAE software and 3D scanning techniques. 
Moreover, the CCM technique preserves angles, ensuring the mesh quality of the plane parameter domain and reducing distortion in 
topography description caused by the mapping process.

5. Numerical examples

In this section, we first validate the effect of topography variations on improving the mechanical performance of shell structures. 
Next, representative examples are provided to verify the effectiveness of the proposed algorithm. Finally, factors that have dominant 
effects on the final design are investigated in detail. Unless otherwise stated, the geometry sizes and material properties are set as 
dimensionless. The material is isotropic and linearly elastic, with Young’s modulus and Poisson’s ratio chosen as E = 1 and ν=0.3, 
respectively. The objective of the optimization problem is to minimize the structural compliance (Eq. 3.1(b)), i.e., maximizing the 
structural stiffness. The optimization process terminates at the 300th step. The number of the shape control coefficients for every 

component is taken as 9 (nr = 8), and the knot vector is chosen as the common uniform form, i.e., Ξ =

{

− π, − π, − π, − π + 1 ∗2π
7 , −

π + 2 ∗2π
7 ,…, − π + 6 ∗2π

7 ,π,π,π
}

.
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5.1. Mechanism validation

In order to eliminate the influence of the mapping process and the curved geometry of the original shell structure, a simple square 
plate subjected to a concentrated force is adopted here as the fundamental example. As illustrated in Fig. 11, the length of the side and 
the thickness are set to 80 and 0.2, respectively. To validate the function of the topography field, various parameters are set to produce 
diverse designs, as shown in Fig. 12.

Compared with the flat-topography design in Fig. 12(a), the protrusive circular truncated cones in Fig. 12(b-d) significantly 
decrease the displacement magnitude and improve structural performances. We can observe that the performance of the magnified 
topography (Fig. 12(c)) is better than the basic topography (Fig. 12(b)). A natural conclusion is that the larger the topography, the 

Fig. 11. Boundary conditions of the square plate example. The length of the side is 80, and the thickness of the plate is 0.2. The concentrated force 
with unit magnitude is loaded at the center.

Fig. 12. Comparison between the displacement magnitudes of different topography settings. (a) Non-topography design with the maximum 
displacement magnitude Umag

max = 2.51e5. (b) Single topography component design with all shape coefficients set to 8. The height of the component is 
set to 4, and the maximum displacement reaches Umag

max = 1.88e5. (c) By increasing the shape coefficients to 16 while keeping the height at 4, the 
maximum displacement is changed to Umag

max = 1.22e5. (d) By increasing the height to 8 while keeping the shape coefficients at 4, the maximum 
displacement is changed to Umag

max = 1.87e5.
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better the structural performance. Unfortunately, this opinion does not hold. Assuming the basic topography is continuously enlarged 
until its central even region covers the whole plate, the resultant structure will regress to the flat topography design and obtain a worse 
structure response. This phenomenon is also the core reason the volume fraction constraint is not required in the topography 
optimization.

We further explored the effect of topography location, i.e., the distribution of the function Umax = Umax
(
x1,x2), where Umax is the 

x3-direction displacement of the loading point (in this case, the magnitude of Umax is twice the compliance). 
(
x1, x2) is the in-plane 

coordinate of the central point of the basic topography design (Fig. 12(b)). By altering the coordinates of the central point of the 
basic topography design, we can obtain a series of displacements, and the function distribution is illustrated in Fig. 13(a). Each point in 
this cloud map is assigned a specific value, representing the magnitude of the function Umax when the basic topography is located at this 
position. From the figure, we can observe the non-convexity of the optimization problem (the objective function is a non-convex 
function about the topography coordinate), which also verifies the necessity of constructing an algorithm to design the shell 

Fig. 13. Effect of the location of the basic topography component. (a) Cloud map that describes the variation of the displacement magnitude at the 
loading point as the basic topography component moves. (b) Three curves that characterize the low-dimensional distribution of the cloud map (a) 
along the red, blue, and green arrows, respectively.

Fig. 14. Iteration histories and intermediate results of the basic topography design problem of the plate structure. (a) Initial design. According to 
the iteration sequence, the displayed structures represent intermediate structures of the 1st step (C = 136,443.80), the 5th step (C = 4868.34), the 
50th step (C = 1768.73), the 150th step (C = 1145.91), the 200th step (C = 959.54), and the 300th step (C = 876.03). The value of the compliance 
function of the original structure (Fig. 11) is = 2.51e5.
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Fig. 15. Different views of the final design. (a) Front view 1. (b) Front view 2. (c) Front view 3. (d) Back view 1. (e-g) Cross-section diagrams at the 
transverse quarter position, at the transverse half position, and the three-quarters position. (h) Cross-section diagram along the diagonal direction. 
(i-l) Height filter diagrams of the zone of the initial height, the perturbed zone, the zone where the height is larger than half of the maximum height 
prescribed, and the zone where the height is at the maximum value.

Fig. 16. Final designs of different thickness settings. (a-d) The thicknesses are 0.05, 0.1, 0.4, and 0.8, respectively. The compliance functions of 
these final designs are 2.20e4, 2.24e3, 312.66, and 262.56, respectively. The corresponding initial layouts of components for these six examples are 
set the same as Fig. 14(a), and the related initial compliance functions are 7.21e6, 9.53e5, 17,182.94, and 2356.02, respectively. The reduction rates 
of the compliance functions (obtained from reduced displacement magnitude over the displacement magnitude of the initial design) are 99.69 %, 
99.76 %, 98.18 %, and 88.86 %, respectively.
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topography. In addition, low-dimensional distribution features of the function along three arrows (in Fig. 13(a)) are shown in Fig. 13
(b), in which these three curves plot the function Umax = Umax

(
x1, x2

)
with the coordinate x2 fixed at x2 = 40 (red curve), x2 = 60 (blue 

curve), and x2 = 80 (green curve).

5.2. Designing the topography of a plate structure

In this section, we explore the effects of problem-setting parameters (i.e., the thickness of the plate, the boundary conditions, and 
the initial curvature of the geometry model) on the final design. Considering that the mapping process and the curved geometry may 
impede the observation of experiment phenomena, the plate example in Fig. 11 is utilized. First, we conduct a basic topography 

Fig. 17. Final designs of different height settings. (a) Iteration curves. (b) Initial designs corresponding to the cases of topography heights set as 1, 2, 
4, 8, and 16, respectively. The compliances of the initial designs are 149,410.66, 142,453.00, 136,443.80, 130,516.98, and 124,903.23, respec-
tively. (c) Final designs corresponding to the cases of maximum topography heights set as 1, 2, 4, 8, and 16, respectively. The compliances of the 
final designs are 8007.17, 2560.21, 876.03, 350.29, and 160.26, respectively.
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optimization without changing any problem-setting parameters. The initial design with 4 × 4 components is set as Fig. 14(a). The 
initial topography heights and the maximum topography heights (i.e., hi and hmax

i ) are both set as 4. The entire iteration history is 
displayed in Fig. 14, from which we can observe that the topography is smooth throughout the optimization, and the compliance 
function decreases rapidly in the first 20 steps owing to the convergence advantage of the MMC framework. After the 20th step, the 
optimization progress gradually tends to the modification of the topography details. After the 50th step, the objective function con-
verges to a stable value.

The final design is presented in Fig. 15, which achieves a displacement reduction of around 99.36 % (the compliance objective 
function decreased from 136,443.80 to 876.03). The significant promotion is mainly achieved by the corrugation configuration across 
the sections, as illustrated in Fig. 15(a-h). As seen from above, sharp hill-shaped structures are formed near the four fixed ends, and the 
cross sections contain multiple peaks and valleys. These features efficiently restrain the out-of-plane deformation induced by the 
support reaction. Diverse height filter diagrams are illustrated in Fig. 15(i-l), which prove the complexity of the topography description 
and the effectiveness of the related constructing framework.

Considering that the thickness factor significantly affects the magnitude difference between stiffnesses of the in-plane and out-of- 
plane directions, potentially influencing the proposed algorithm’s effect, we set various thicknesses from 0.05 to 0.8 in the plate design 
example and keep other parameters the same. The final designs are presented in Fig. 16, which provides an overview of the effect of the 
thickness factor. Overall, the thinner the shell, the more the algorithm improves. As the thickness increases, the final-designed 
topography gradually diffuses from the center area to the surrounding area and forms a circle shape. The main reason is that the 
transverse bending and shearing stiffnesses rise as the thickness increases, which weakens the improving effect of uneven topography 
and drives the topography to form more ups and downs (e.g., three height changes in the section diagram in Fig. 16(a) versus seven 
height changes in the section diagram in Fig. 16(d)). Despite the differences in the final designs, some common structures form in the 
designed structures. For instance, sharp hill-shaped structures form near the four fixed ends. Interestingly, closer inspections of the 
designed structures show that the narrow and long groove substructures appear at the center points in all final structures, which proves 
the efficiency of improving the local stiffness at the loading point.

In addition, the height influences the effect of topography and the optimization results. Hence, we further explored the role of 
height in topography design. In the following five cases, we set the topography heights (including initial heights hi and maximum 
heights hmax

i ) as 1, 2, 4, 8, and 16, as shown in Fig. 17. Among them, when the height is set to 4, it is the design example in Fig. 14. 
Iteration curves of different settings are plotted in Fig. 17(a), from which we can find out that these curves start from different initial 
values, and undergo similar variation tendencies, and converge to respective final values. Comparing different iteration curves, we can 
find that both the compliances of the initial design and the final design decrease as the height increases. This indicates that the rise in 
topography height will improve the structural stiffness and the optimization effect of the final design. The initial designs are illustrated 
in Fig. 17(b). These topography components differ only in height. Indeed, with the increase in height, the compliance gradually de-
creases, and the structural stiffness gradually increases. Nevertheless, it is worth noting that the compliance decreases slowly despite 
the height increasing exponentially (i.e., the increment of material volume increases exponentially) in these initial design cases. This 

Fig. 18. Iteration histories and intermediate results of the topography design problem of the plate structure subjected to in-plane force.
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illustrates the necessity of rational and systematic design, i.e., materials cannot be sufficiently utilized if we directly employ the 
“empirical” initial designs. The validation of the former assertion is also provided in Fig. 17(c). Using topography optimization, the 
compliance of the final designs can decrease exponentially (the compliance decreases by 1/2~5/7 for every doubling of the topog-
raphy maximum height). The height limitation variation also causes differences in the optimized structures. It is evident that with the 
elevation of the height, the initially connected whole topography gradually separated, forming several isolated islands. In addition, 
similar structural features still exist in different designs, i.e., groove substructures are formed at the loading points, and hill-shaped 
structures are formed at the four corner points (analogy to Fig. 16).

The effectiveness of topography design has been proved in previous examples. Nevertheless, does an uneven design always work 
better than a flat topography design? The answer is negative. Next, we provide an intuitive example to refute such an opinion and 
explore the influence of boundary conditions on the final design. The geometry and material of the current example are set the same as 

Fig. 19. Modified middle surfaces and the corresponding final designs. (a-d) The parameter γ of these cases are set as 10, 20, 40, and 80, 
respectively. (e-h) The contours (corresponding to cases 1–4) of displacement magnitude are plotted on the deformed shapes. The compliance 
functions of the non-topography designs of cases 1–4, i.e., (a-d), are 2095.38, 1351.56, 1119.50, and 1260.84, respectively. (i-l) The final designs 
correspond to cases 1–4, and the compliance functions of the final designs are 156.36, 169.44, 426.60, and 216.72, respectively. The reduction rates 
of the compliance function are 92.54 %, 87.46 %, 61.89 %, and 82.82 %, respectively.
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in Fig. 11; the only difference is that the concentrated force is rotated to the x2 direction, and the loading point is still the center of the 
plate. The initial design is the same as Fig. 14(a), and the iteration history is illustrated in Fig. 18. From the curve, we can still see that 
the optimization converges quickly, and the compliance function gradually decreases. Most striking is the structure evolution process, 
which illustrates that the protruding topography decreases and vanishes step by step. However, this phenomenon is consistent with the 

Fig. 20. Problem settings of the saddle-shaped shell example. The shell structure is fixed at four corners and subjected to a concentrated force at the 
saddle point. The force with a unit magnitude is applied along the − x2 direction. The thickness is set as 0.02.

Fig. 21. Initial designs, iteration curves, and final designs of different component layouts. The compliance functions of the initial designs (a-c) are 
4077.04, 3910.32, 3749.56, respectively. The compliance functions of the final designs (d-f) are 463.62, 444.84, 435.84, respectively.
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basis of this study, that is, the external load is in-plane in this example, and the optimal topography should utilize the in-plane stiffness 
as much as possible, which drives the initial protruding components to vanish.

The effect of curvature on the mechanical performance of shell structures can be significant and is influenced by various factors, e. 
g., shells with higher curvature tend to be stiffer against certain types of loads (particularly those acting perpendicular to the shell’s 
surface) (Lazarus et al., 2012), and curvatures may lead to better load-carrying mode (Bischoff et al., 2004). Hence, we further 
examined the influence of geometry curvature on the final design in this example. The middle surfaces (shown in Fig. 19(a-d)) are 
modified according to the following equation: 

x3 = γ ∗

(
(x1 − 40)2

+ (x2 − 40)2
)

3200
. (5.1) 

The boundary conditions, the thickness, and the material parameters remain the same as in the example of Fig. 11. The initial 
component layout is set the same as in Fig. 14(a). Fig. 19(i-l) presents the final designs of these examples. We note that in a proper 
range (Fig. 19(a-c)), the higher the curvature, the stiffer the original shell structure. For case 4, areas around four support ends are 
weak, with enormous displacement magnitude, as shown in Fig. 19(h). Hence, the overall stiffness of the structure in case 4 is less than 
that in case 3. The improvement of topography design decreases as the original structure becomes stiffer (in the order of Case 1, Case 2, 

Fig. 22. Problem settings of the cone-shaped shell example. The geometry model is reconstructed from the 3D point cloud data (a). (b) The shell 
structure (the thickness is set as 3) is fixed at four corners and subjected to five concentrated forces (four at the middle of edges and one at the center 
of the surface). The forces are applied along the − x3 direction.

Fig. 23. Iteration histories and intermediate results of the cone-shaped shell example. (a) Initial design (C = 424.74). (b) Final design (C = 109.42).
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Case 4, and Case 3). For high curvature structures (Case 3 and Case 4), areas surrounding the central points are stiff enough, and the 
weak areas are around the four support points, which causes the topography components to disperse into corners to enhance the local 
stiffness.

5.3. Optimizing topography of surface shell structures via the CCM technique

The CCM technique is necessary to obtain the topography design for shell structures whose curvature varies spatially. This section 
provides two representative models to verify the algorithm’s effectiveness in handling shell structures and validate the potential to 
construct joint optimization algorithms for ulterior performance improvement.

The saddle-shaped shell example
The first example is a saddle-shaped shell, whose geometry sizes and boundary conditions are illustrated in Fig. 20. The process of 

constructing the surface topography is straightforward, i.e., directly utilizing the CCM technique and the embedded topography 
description. Here, we examined the effect of the initial component layout on the final design. Fig. 21 (a-c) demonstrates three types of 
initial structures, where components are placed as 4× 2, 6× 3, and 8× 4, respectively. The iteration curves are plotted in Fig. 21, from 
which we can observe that the overall trends are consistent, and all optimization processes converge to approximate values. The 
corresponding final topography designs are illustrated in Fig. 21(d-f). The final designs show that the topography distributions in 
central zones are similar, and narrow grooves are formed in all these models. Additionally, as the number of components increases, 
more structure details occur in the edge areas to further improve the structure performance.

The cone-shaped shell example
For the second example, we utilize the cone-shaped shell reconstructed from a 3D point cloud (obtained by the 3D scanning 

technique) to verify the potential for joint optimization with existing shape optimization methods. The geometry sizes and the 
boundary conditions are presented in Fig. 22. First, we conduct the proposed topography design approach. The iteration histories and 
intermediate results are shown in Fig. 23, in which we can observe that the optimization and the designed structure converge quickly. 
Four corners of the final design bulge to improve the local stiffness near the support points. Then, we conduct the shape-topography- 
joint design, as presented in Fig. 24. As can be seen from the curve, the topography optimization further improves the shape opti-
mization results. The result of the experiment indicates that the joint optimization can obtain a stiffener structure than designing the 
shell’s shape (the 300th structure in Fig. 24) or topography (Fig. 23(b)) independently. In addition, there are significant differences 
between the results of the joint optimization and the independent topography design, which shows the sensitivity of the topography 
design to the base surface.

Fig. 24. Iteration histories and intermediate results of the shape-topography-joint design for the cone-shaped shell example. Before the 300th step, 
the iteration process utilizes the shape design approach to optimize the structural performance, in which the compliance function is reduced from 
629.80 to 210.08. At the 301st step, the proposed topography design method is employed to improve the structure property further; the base surface 
is the resultant surface of the shape optimization process, and the compliance function is ulteriorly reduced to 61.62.
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5.4. Designing topography for complex shell structures

In the current subsection, we leverage two complex shell structures to demonstrate the importance of the surface-cutting operation 
and the multi-patch stitching scheme.

The eight-shaped torus shell example
The first eight-shaped torus shell structure is shown in Fig. 25. Apparently, this model cannot be directly mapped to a plane 

rectangle. Hence, the additional operations are leveraged to construct the surface topography, as shown in Fig. 26. The initial com-
ponents are placed as Fig. 27(a) and the intermediate designs are demonstrated in Fig. 27. As can be seen, the optimized structure at the 
150th step is close to the final design and the final compliance function is reduced to 9.09 % of that of the initial layout.

The vase example
For the following vase example shown in Fig. 28, additional preprocessing is not necessary from the perspective of algorithm 

implementation; that is, the mapping technique can be directly applied to the middle surface. However, as displayed in Fig. 28(c), the 
direct-mapping strategy induces unavoidable global distortions to the component layout. Hence, the multi-patch stitching scheme is 
leveraged to divide the whole surface into two parts, i.e., the to-be-designed body patch and the undesigned bottom patch, and the 
initial component is placed as presented in Fig. 28(d), from which we can observe that the topography distortion problem is well 
addressed. The iteration history and the final design are demonstrated in Fig. 29. As the optimization advances, the topography 
components gradually move towards the bottleneck to increase the radius here and reduce the local curvature. On the other hand, the 
bottom area gradually forms four circularly distributed bars, which enhances the local stiffness near the fixed ends. At last, the final 

Fig. 25. Problem settings of the eight-shaped torus example. The orange circles are fixed boundary conditions distributed along the circular di-
rection, and the circular coordinates (i.e., α1 and α2) are π

4,
π
2,π,

3π
2 ,

7π
4 . The red arrows are concentrated forces applied perpendicular to the surface. 

The circular coordinates of these forces are 0, 3π
8 ,

3π
4 ,

5π
4 ,

15π
8 , and the radial distances between the applied points to the circle center are all set as 20. 

The thickness in this example is 0.01. In this example, the elastic modulus is set as 210,000, and the magnitude of forces is set as 100.

Fig. 26. Geometry preprocessing of the eight-shaped torus surface (taking the left half as the example). (a) The half model is a torus surface that has 
an open boundary. (b-c) Here, we divide the original surface into two independent patches according to the geometry feature. (d-e) Each patch is 
mapped to a plane rectangle domain after the surface-cutting operation. Note that the boundary of the original surface is mapped to a plane hole 
in (e).
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design reduces the compliance function by 78.98 % compared with the initial design.

6. Conclusions and extensions

In this article, we propose a novel and systematical structure optimization procedure for designing the topography distribution of 
complex shell structures by combining the MMC method and the CCM technique. The embedded description enables us to construct the 
topography variation on general surfaces and perfectly attaches the topography component to the base surface. The introduced TDF 
function and the enhanced spline component representation endow the proposed algorithm with the ability to describe complicated 
surface topography. By employing the surface-cutting operation and the multi-patch stitching scheme, the application scope of the 
proposed method is significantly enlarged, and the mapping distortion challenge is well addressed. Numerical examples demonstrate 
the capabilities of the proposed framework to enhance stiffness. Compared with existing methods, including the CAD-based and node- 
based shape optimization methods, the MMC-based model in this study offers a straightforward and easy-to-implement way to 

Fig. 27. Iteration histories, intermediate results, and the final design (300th step) of the eight-shaped torus shell example. (a) Initial design (C =
31,631.04). (b) The design of the 25th step (C = 5110.71). (c) The design of the 150th step (C = 3458.74). (d) The final design (C = 2876.67).

Fig. 28. Problem settings of the vase example (the thickness is 0.05). (a) The bottom of the vase is clamped, and the edge is subjected to a linear 
load of unit magnitude in a vertical direction. (b) The geometry model is generated by rotating the profile around the central axis. (c) The direct- 
mapping strategy results in massive distortions of component layout, which is intrinsic and unavoidable for the global mapping approach. (d) 
However, the distortion challenge can be resolved via the preprocessing strategy. Meanwhile, the undesigned domain (the grey bottom patch) is 
divided due to its zero-strain-energy state.
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optimize complicated local topography since the parameterization process in CAD-based methods, and the filtering operations in node- 
based methods are eliminated. The proposed algorithm can achieve fast convergence with few iteration steps and design variables 
owing to the MMC method. Additionally, the explicit description endows the topography with mechanics, geometry, and engineering 
connotations (similar to ribs) and makes the final design more interpretable.

Nevertheless, as the first step towards explicit topography design, the present work has two major limitations. The structural 
response to be optimized is limited in the static compliance regime, and complex structural responses remain unexplored. In addition, 
although our approach has several advantages, such as few design variables, high computational efficiency, and good convergence, the 
integrated MMC method is a generalized dynamic ground structure approach with the shortcoming of initial dependence.

Consequently, this study can be expanded in multiple directions: (1) apply topography design to other mechanics problems, such as 
guiding the paths of cracks (Feng et al., 2023; Liu et al., 2023; Mitchell et al., 2017); (2) topography variation is essentially the altering 
of geometry domain, hence has the potential to improve other physics responses, e.g., thermal conduction and optics; (3) introduce the 
growth mechanism of components (Cui et al., 2022) to improve the design ability of the algorithm; (4) topography-designed shell 
structures are similar to sheet metal structure, therefore simultaneously optimizing structure topography and considering 
manufacturing methods (such as milling, welding, additive manufacturing, digital incremental forming, and mega-/giga-casting) is 
also a promising direction.
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